Y

T

NWSY TR 80-2

PROGRESS REPORT ON
EXPLOSIVES MACHINING
STUDY

By
Robert Petersen
Naval Explosives Devclopment Engineering Department

“August 1980 sELECTED
OCT 2 3 1080

Approved for public release; distribution unlimited.




T L AERREAS R T A TR LAl sk i abe bl bk Sudbihit i il i b bl CERTTEY TREE R e i v W

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE anr%%ﬁnclgs;:g%ﬁg?om
2. GOVT ACCESSION NO)| meﬁmsa-—
- Ef/fﬁa 752»

- s TYER F RIPORT & FERIOD COVERED

. “

+ _AUTHOR(a)

Roberﬁ/Peterseg[

--;IHPORMINO ORGANIZATION NAME AND ADDRESS 10. PR ORMA Il.lnl PRO.JIH.
Naval Weapons Station NA¢§ work e quest
Yorktown, VA 23691 ~ NOOOZdBONROBOB? dtd
(Code 50) 1 0ct 1979

11, CONTROLLING OFFICE NAME AND ADDRESS

12. REPORY DATE

13. NUMBER O aEs

‘ i-11 and 1-10
T4 MONlTOilNG,AaENCV NAME & ADDRESS(If dilferent from Controlling Ollice)

18. SECURITY CLASS. (of thie report)

UNCLASSIFIED

T3a. gE&. AlﬁlﬂCATlON’ DOWNGRADING

16, CISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entersd In Blook 20, M diflerent trom Report)

18, SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverae aide il necessary and tdentity by block number)

Explosives Depth of cut
Machining Feed
Cutting speed Thermal hazards
20, ABSTRACT (Continus on reverse slde If y and identity by block number)

Investigation of machining variables' effects on explosive chip temperature.

T e e ASSIFIED 253 T35
CECURITY CLASSIFICATION OF NS PAG e Inteved) ”0"#



TR ST T ST T W e ey - s v e s g
P 1«"""‘*‘M» W y I:" \
i

T TR TR Y

UNCLASSIFIED

Y GURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

SECURITY CLASHFICATION OF THIS PASE(Wen Dute Batersd)




AR TR LT T LR R TR AT LW ) ¥ Rabbatd i bl o e M b R sl KSR MM kb i

NWSY TR 80-2

FOREWORD

1. This report contains the preliminary results of an investigation into
the hazard potentials of cutting speed, depth of cut, feed rate and cutter
design when machining explosives.

2. The effort reported herein was authorized and funded under the Naval
Sea Systems Command Work Request NOO02480WROB087 of 1 October 1979.
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PROGRESS REPORT ON EXPLOSIVES MACHINING STUDY

I. INTRODUCTION

" The machining of explosives is required to proche and/or demilitarize
the majority of Navy ordnance. To reduce risks, OP 51 provides the con-
straints regulating machining operations. Of prime importance are those con-
cerning the machining variables, i.e., cutting speed, depth of cut, and tool
feed rate. The cutting speed 1imit is considered too conservative by some;
however, a fairly recent explosion while core sampling a cast plastic-bonded
explosive has raised the caution flag. Considerable machining experience has
been compiled on explosives with Tow meiting point ingredients, such as TNT
and wax, that impede achieving excessive temperatures in those explosives.
Teday's plastic-bonded explosives are designed for high temperature use, and
thggjrore do not contain those "built-in safety valves".

This study, sponsored by the Ammunition Systems Group of the Naval Sea
Systems Command,&is to quantify, if possible, the hazardous effects of the
machining variables.

Initiation of an explosive is a thermal phenonema where input energy,
regardless of its form (impact, shock, etc.), is converted to heat, increasing
internal energy until an activation level is reached - an exothermic chemical
reaction occurs providing heat for additional reactions to occur, continuing
the cycle, until a "runaway" condition exists.

Therefore, if the effect of a machining variable is to raise explosive
temperature, then it has increased the possibility for initiation to occur.
Consequently, it was decided that an investigation of the heat producing
effects of the machining variables, as manifested by explosive temperature
increases, would provide the most beneficial insight as to their hazard-
producing potentials.rk

Normally, maximum temperature occurs in the relatively small mass of the
explosive chip due to rupture along its shear plane and subsequent sliding
across the cutter face. Since it is difficult to measure temperature at that
point without disturbing normal chip flow, plus the desirability for inter-
changeable cutter use, a thermocouple-instrumented spacer that supports the
cutter insert (Figure 1) was used as an indirect measure of chip temperature.

Even though thermocouple temperature is a function of several variables,
i.e., chip temperature, area of the chip-cutter interface, and heat conduction
path through the cutter, it should serve as a relative measure of heat pro-
duced in the chips of various materials being machined.

INAVSEA OP 5, Ammunition and Explosives Ashore (Safety Requlations for
Handling, Storing, Production, Renovation and Shkipping)

p- |
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II.  PROCEDURE

A lathe turning operation with a single pointed cutter, no coolant, and
easy chip removal was selected as the optimum for isolating the cutting
variables' effects. Two types of tungsten carbide cutter inserts were used to
demonstrate the effects of positive and negative back rake cutters, while pro-
viding uniformity in cutter shape and surface characteristics. A thermocouple
installed in the cutter seating spacer of the tool holder assured consistency
:nimonitgging the same discreet area of the underside of the clamped-in cutter

Figure 1).

The initial effort was to evaluate the effects of cutting speed, depth
of cut, tool feed rate and cutter configuration on the thermocouple tem-
perature for various inert materials. Ranges of the machining variables were
selected to suit the eventual explosive study, and were:

50 - 300 surface feet per minute cutting speed (CS).
.005 -~ .096 inch depth of cut (Dp).
.002 ~ ,020 inch per revolution feed (Fd).

Preliminary trials of the test setup on inert materials disclosed two
very fortuitous aspects of the thermocouple location; first, it was very sen-
sitive to changes in the machining variables, and secondly, for any set of
machining conditions a substantially constant or stabilized temperature would
be maintained. The temperature rise, At (stabilized minus ambient), provided
the measurable effect of the machining variables.

A statistical method, the two-level factorial design, provided the means
for determining the effect of cutting speed, depth of cut, and feed rate for
each cutter configuration in the minimum number of experiments. Analysis of
those results led to a procedure for developing a mathematical relationship
between the variables and At for each of the materials studied.

The inert study provided a convenient means of verifying procedures and
establishing a reference base of data for materials of widely differing phys-
ical properties.

To date, machining experiments have been completed for five explosives -
TNT, HBX-1, PBXN-3, PBXN-104, and PBXN-105. Equations, relating thermocouple
temperature to the machining variables for each type cutter, have been
derived. A1l of the relationships are presented in Table I.

To better {1lustrate the comparative effects of those egquations, the
maximum explosive machining 1imits permitted by OP 5, i.e., 210 surface feet
per minute cutting speed, 0.188 inch depth of cut, 0.035 inch per revolution
feed, were used to calculate At's for each material. These are shown in
Table II.
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The temperature equations established for the metals are intended to
provide a general basis for comparison of materials. The machinability of
metals can be drastically affected by composition, heat treatment, work
hardening, etc., and is a very complex subject, not to be explcred here.

Although the temperature of the explosive chip is the primary concern,
comparison of the thermocouple temperatures achieved by machining various
materials at the same conditions should provide a measure of the relatfve
heat-generating, and therefore hazard-potential, characteristics.

Lacking a means of directly measuring the chip-cutter interface
temperature, a method for roughly estimating it was developed. By using 93
degrees Celsius (°C) and 316°C temperature-indicating crayons, and deducing
that interface contact area is related inversely to chip temperature, the
following equations were derived: '

At
1 For metals, R ot AR
m als, Y = S5+ o0
1.75 At + 22
2 For non-metals, t. =
(2} C  N75 0p + 1

Insertion of the standard machining conditions and calculated At's
of Table II in Eqs. (1) and (2) permitted the calculation of estimated chip
temperatures alsc listed in Table II.

An example of the method for determining experimental machining con-
ditions and subsequent derivation of the At equations are shown in Table III
and Figure 2. The ranges of each variable, xj, x2, and x3, were 100 to 300
surface feet per minute cutting speed, 0.016 to 0.048 inch depth of cut, and
0.005 to 0.020 inch per revolution feed, respectively. The plus or minus
signs for those variables in the matrix determine whether the high or low
1imit value of the range will be used for each experiment. At's, provided by
the temperature traces, are recorded in Table III.

The effect of each variable and their interaction is found by taking the
arithmetic sum for each column (assigning the plus or minus value to each test
number At). Dividing each columnar total by the number of test runs, eight
in this instance, provides a measure of the effect of each variable and their
interactions (only positive values have significance). Assuming the total
effect of the variables accounts for the range of At values produced, propor-
tionate values of that range are calculated for each. These values are then
divided by the range of their respective variables to get a per unit of
measure change. Inserting these values in
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(3) Ot=axCS+bxDp+cxFd+dxCSxDp ... +K

and solving for each test condition provides the means for determining the
constant, K.

IIT. DISCUSSION OF RESULTS

The thermocouple-instrumented spacer in the tool holder has proven to be
a very satisfactory means of monitoring the heat produced in the cutter-chip
interface, since it is surprisingly sensitive to machining conditions, does
?ot interfere with chip travel, and facilitates the replacement of cutter
nserts.

The temperature rise equations for the various materials are easily
verified due to the small number of trials required by the two-level factoriai
designed experimental method.

The At values, at standard conditions, shown in Table II, appear
representative of the expected relative energies required to machine those
materials, thus lending credence to this method of evaluating them. There are
substantial differences ir the heat-production characteristics of the explo-
sives while being machined at the same cutting speed, depth of cut and feed
rate. This is shown by the range of thermocouple Ot's, from a low of 10°C
for TNT, to three times that for PBXN-104., Estimated chip temperatures would
be approximately 30°C and 63°C, respectively.

The relative effects of each of the variables, and their interplay, on
At remained fairly constant throughout the gamut of materials investigated.
Depth of cut exerted the strongest effect, followed by cutting speed and feed
rate, with their ratios of magnitude being roughly 2.2:1.9:1.0, respectively.

The "worst case" explosive, PBXN-104, results in a At of 32°C when
machined with a positive rake cutte~ at the OP 5 machining 1imits, as shown in
Table II. If the depth of cut were increased from 0.188 inch to 0.25 inch,
At would increase to 4:1°C, and calculated chip temperature to 65°C. )

It must be remembered, however, that although useful for assessing
the relative hazards of machining various materials, a At of the implanted
thermocouple may be attributable to a high temperature explosive chip making
very little surface contact with the cutter, or a lower temperature chip with
considerable surface contact. Explosive cnip temperature should be the basis
for assessing specific hazardous machining conditions. Determining chip tem-
perature through analysis of a very complex heat transfer situation would be
very difficult, so empirical solutions from a few "xnown" conditions were
developed. Hopefully, it may be refined and verified by future experiments.

IV. OBSERVATIONS
This scudy, to date, has achieved the following:
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. The machining variables' effects have been related to explosive
temperature, an optimum indicator of its chemical stability or
hazard potential.

. The simplicity of the instrumentation and the proficiency of the
statistically designed test method have enabled the accumulation of
a considerable amount of meaningful data with relative ease in a
short period of time.

. Expression of the variables' temperature effects in equation form has
negated the need for describing them in cumbersome, less effective,
alternate methods such as families of graphs, etc.

. Comparison of the At's achieved by various explosives under the same
machining conditions provides a measure of the relative hazard poten-
tials of those materials.

v. CONCLUSIONS

The explosive machining Timits must allow for other than {ideal con-
ditions. Instances where foreign materials, broken tools, and inadvertent
cutting of warhead hardware have occurred in the past without incident while
machining the older, “safer" explosives; they can be expected to recur.
Whether the new plastic-bonded explosives will survive that type abuse has
net been established as yet due to the relatively small quantities of cased
PBX's machined to date.

This study provides evidence that an appreciably more hostile
environment is produced while machining PBXN-104 as compared to TNT. The
Ot equations provide a means for calculating increased machining variables'
1imits for TNT to raise it to a comparable risk level., The relative insen-
sitivity to initiation of TNT would further support such a move, if desired.

Lack of experience at the increased hazard level, plus the confusion
resulting ¥rom tailored machining 1imits, would make such a move inadvisabl

. at this time. )

The mechanics of explosive initiation is not an exact science.
Avoiding accidental initiations requires good judgement based upon
experience, sensitivity testing, and a knowledge of the hazard potential of
the environment to which explosives will be exposed. Many additional explo-
sive compositions are planned for study in an attempt to better define the
environmental hazards they will be subjected to while being machined.
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TUNGSTEN CARBIDE
CUTTER INSERT

- e
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Dt = 1°C Dt = 5°C
Test No. 1 Test No. 4
«1&
At = 3,5°C \ At = 2°C
) Test No. 7 Test No. 3
At = 2°C Ot = 6.5°C
Test No. 2 Test No. 8
At = 1.5°C At = 3°C
\ Test No. 5 Test No. 6

FIGURE 2. LATHE TURNING EXPERIMENT - TEMPERATURE TRACES FOR HBX-1
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TABLE I. EQUATION COEFFICIENTS

Back
Material rake | 2 b c d e f 9 K
Inert:
Pos | 0.20| 1625 4310 2| ...]40,000] ... | -23
POS 00“3 14]5 3535 2 4 v s "18
]020 StGE] Neg 0020 ]855 5]20 2 ve e ses K] "20
Pos |0.081 1175] 2450 ...} ..o eoel voe] 0o
Berylium Copper |Neg | 0.08}| 2170 3500 ...| ...} 36,800) ... | -2
POS 0'08 540 2727 0.3 ‘e o ]4,200 L] ‘15
6061 Aluminum Neg |0.11} 616} 3913} ...} ...] 12,858} ... ]| ~16
Pos |0.06| 250, 300] ...| ...| 5,780 22]...
Velostat Neg {0.04] 220 520%{ 0.1}) ...| 2,200} ...{ -3
POS 0-07 390 670 0-2 0.7 Y ve e -8
PVC Neg { 0.06 341 825 ...{ 1.2 ceof 231 -6
PBXN‘]04 POS 0.06 3]0 580 0.] 004 anre se v -8
Simulant Neg | 0.03| 425 630| 0.1 ..., 1,000 ... | -20
pOS Ou03 95 440 00] e 975 e ‘3
Teflon Neg | 0.02 75| 5251 0.1 ...} 1,750 ... | -2
Pos | 0.01 40 201 0.03] ... A e Y
Filler E Neg | 0.01 56 30| 0.02§ ... con]| eee ] ees
Explosive:
POS 0.02 125 ]94 0.05 oo (¥} XX "4
PBXN-104 Neg |0.02] 129| 258] 0.04| ... 430 ... | -7
Pos |0.02| 102| 74| ...loa| ...|..| ] |
PBXN~3 Neg 0002 ]46 62 0-05 ss0 s ses "2 i
POS 0-0] 88 ]06 se e TR e s "2
HBX'] Neg 0.01 63 63 0006 X ce s ves ‘2
POS 0002 4] 95 XX "o sae ere “2
PBXN-105 Neg {0.02 69 13410.09] ... cosf eee ] =3
POS 0.01 36 60 0.03 .o 0. “an s "'2
TNT Neg 0.01 36 60 0.03 “s v co "2
Dt =axCS+bxDp+cxFd+dxCSxDp+exCSxFd+

f xDp x Fd+ g x CS x Dp x Fd + K

O £ A B £ 0

et e e Sl A A RS h
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TABLE II. COMPAPATIVE At AND CHIP TEMPERATURE FOR MATERIALS
MACHINED AT OP 5 MAXIMUM LIMITS*

Pos rake [ Neq rake

Mater{al Ot Agz;p At TSE;a"
(°c) | (°c) | (°c) (°C?

Inert:
Airdi Steel 8181718 | 819 | 171
1020 Steel 507 | 1065 | 629 [ 1321
Beirylium Copper 3231 679 | 787 | 1653
6061 Aluminum 304 | 639 | 344 | 723
Velostat 139 | 200 831 126
PVC n7| n 82| 125
PBXN-104 Simulant 90| 135 99 | 147
Teflon 47 78 50 82
Filler E 12 32 15 36
Explosive:
PBXN-104 32 59 35 63
PBXN-3 25 49 34 61
HBX-1 201 43 17 39
PBXN-105 13 34 22 46 .
TNT 10 30 10 30
Chip temperature, for metals, t. = E"EEA%ETET : ?

Chip temperature, for non-metals, t; = 1.75 Ot + 22

1.75 Dp + 1

; *O0P 5 maximum limits:

210 surface feet per minute cutting speed
0.188 inch depth of cut
0.035 inch per revolution feed

e e - )
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